A nonlinear impulsive Cauchy–Poisson problem. Part 1. Eulerian description

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Impulsive Evolution Equations

We study the existence and uniqueness of mild and classical solutions for a nonlinear impulsive evolution equation u′(t) = Au(t) + f(t, u(t)), 0 < t < T0, t = ti, u(0) = u0, ∆u(ti) = Ii(u(ti)), i = 1, 2, ..., 0 < t1 < t2 < ... < T0, in a Banach space X, where A is the generator of a strongly continuous semigroup, ∆u(ti) = u(t+i ) − u(ti ), and Ii’s are some operators. The impulsive conditions c...

متن کامل

The Stochastic Eulerian Tour Problem

This paper defines the Stochastic Eulerian Tour Problem (SETP) and investigates several characteristics of this problem. Given an undirected Eulerian graph , a subset =) of the edges in E that require service, and a probability distribution for the number of edges in R that have to be visited in any given instance of the graph, the SETP seeks an a priori Eulerian tour of minimum expected length...

متن کامل

Apelin: A promising therapeutic target? (Part 1)

Apelin is a recently discovered bioactive peptide, known to be an endogenous high-affinity ligandfor the previously orphan G protein-coupled receptor APJ. Apelin/APJ as a novel signaling pathwayhas been shown to play many crucial roles in cardiovascular function, blood pressure regulation, fluidhomeostasis, feeding behavior, obesity, type 2 diabetes mellitus, adipoinsular axis regulation, cellp...

متن کامل

Time domain simulation of a piano. Part 1 : model description

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependant damped plate, using Reissner Mindlin equations. The vibroacoustics equations all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2020

ISSN: 0022-1120,1469-7645

DOI: 10.1017/jfm.2020.787